Critical Thinking, Innovation, Research and Development, Commercialization

Computational Thinking and Big Data

Learn the core concepts of computational thinking and how to collect, clean and consolidate large-scale datasets.

About this course

Computational thinking is an invaluable skill that can be used across every industry, as it allows you to formulate a problem and express a solution in such a way that a computer can effectively carry it out.

 

Estimated 10 weeks

8-10 hours per week

Self-paced

Progress at your own speed

Show More

In this course, part of the Big Data MicroMasters program, you will learn how to apply computational thinking in data science. You will learn core computational thinking concepts including decomposition, pattern recognition, abstraction, and algorithmic thinking. 

You will also learn about data representation and analysis and the processes of cleaning, presenting, and visualizing data. You will develop skills in data-driven problem design and algorithms for big data.

The course will also explain mathematical representations, probabilistic and statistical models, dimension reduction and Bayesian models.

You will use tools such as R and Java data processing libraries in associated language environments.

Show Less

What you’ll learn

  • Understand and apply advanced core computational thinking concepts to large-scale data sets
  • Use industry-level tools for data preparation and visualisation, such as R and Java
  • Apply methods for data preparation to large data sets
  • Understand mathematical and statistical techniques for attracting information from large data sets and illuminating relationships between data sets

Syllabus

Section 1: Data in R
Identify the components of RStudio; Identify the subjects and types of variables in R; Summarise and visualise univariate data, including histograms and box plots.

Show More

Section 2: Visualising relationships
Produce plots in ggplot2 in R to illustrate the relationship between pairs of variables; Understand which type of plot to use for different variables; Identify methods to deal with large datasets.

Section 3: Manipulating and joining data
Organise different data types, including strings, dates and times; Filter subjects in a data frame, select individual variables, group data by variables and calculate summary statistics; Join separate dataframes into a single dataframe; Learn how to implement these methods in mapReduce.

Section 4: Transforming data and dimension reduction
Transform data so that it is more appropriate for modelling; Use various methods to transform variables, including q-q plots and Box-Cox transformation, so that they are distributed normally Reduce the number of variables using PCA; Learn how to implement these techniques into modelling data with linear models.

Section 5: Summarising data
Estimate model parameters, both point and interval estimates; Differentiate between the statistical concepts or parameters and statistics; Use statistical summaries to infer population characteristics; Utilise strings; Learn about k-mers in genomics and their relationship to perfect hash functions as an example of text manipulation.

Section 6: Introduction to Java
Use complex data structures; Implement your own data structures to organise data; Explain the differences between classes and objects; Motivate object-orientation.

Section 7: Graphs
Encode directed and undirected graphs in different data structures, such as matrices and adjacency lists; Execute basic algorithms, such as depth-first search and breadth-first search..

Section 8: Probability
Apply hash functions on basic data structures in Java; Implement your own hash functions and execute, these as well as built-in ones; Differentiate good from bad hash functions based on the concept of collisions.

Section 9: Hashing
Use complex data structures; Implement your own data structures to organise data; Explain the differences between classes and objects; Motivate object-orientation.

Section 10: Bringing it all together
Understand the context of big data in programming.

Show Less

At a glance

  •  Institution: AdelaideX
  • Subject:Computer Science
  • Level: Intermediate
  • Prerequisites: None
  • Langauge: English
  • Video Transcript: English
  • Associated programs:
    MicroMasters® Program in Big Data

About the instructors

Lewis Mitchell

 

Lecturer in Applied Mathematics at University of Adelaide

About the instructors

Markus Wagner

Senior Lecturer, School of Computer Science at University of Adelaide

Simon Tuke

Lecturer in Statistics at University of Adelaide

Frequently Asked Questions

Question: This course is self-paced, but is there a course end date?
Answer: Yes.

Show More

The first course release started on May 15, 2017 and ended on December 1, 2018.
Thesecondrelease of the course started on December 1, 2018 and ends on December 1, 2020.
The third release of the course starts on March 1, 2019 andends on December 1, 2020.

Show Less

Who can take this course?

Unfortunately, learners residing in one or more of the following countries or regions will not be able to register for this course: Iran, Cuba and the Crimea region of Ukraine.

Show More

While edX has sought licenses from the U.S. Office of Foreign Assets Control (OFAC) to offer our courses to learners in these countries and regions, the licenses we have received are not broad enough to allow us to offer this course in all locations. edX truly regrets that U.S. sanctions prevent us from offering all of our courses to everyone, no matter where they live.

Show Less

Ways to take this course

Choose your path when you enroll 

Price

Verified Track

    $249 usd

Access to course materials

Unlimited

World Class institution and universities

edx suppport

Shareable certificate upon completion

Graded assignments and exams

More Courses

Estimated 5 weeks

2-3 hours per week

Self - Paced

Progress at your own speed

$50

Estimated 10 weeks

8-10 hours per week

Self - Paced

Progress at your own speed

$199

Estimated 10 weeks

8-10 hours per week

Self - Paced

Progress at your own speed

$199

Estimated 5 weeks

2-3 hours per week

Self - Paced

Progress at your own speed

$199

Estimated 10 weeks

2-4 hours per week

Self - Paced

Progress at your own speed

$69

Follow Us

edX is a registered trademark of edX LLC. All Right Reserved
Founded Harvard University and MIT in 2012, edX LLC is a landing MOOC provider. The edX® platform is an online leaning destination offering high-quality courses from the world’s best universities and institutions to learners everywhere. edX is the only leading MOOC provider that is both nonprofit and open source.

Powered by Genashtim | © Copyright 2022
Genashtim